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Abstract 

High-throughput techniques that measure thousands of analytes at once have become ubiquitous features of biological resear c h. The 
increasing expectation that the raw data generated by these techniques be deposited to public repositories creates rich opportunities 
for secondar y anal ysis of these datasets. Such opportunities can take multiple forms. As the recipient of the 2023 J unior Resear c h 

P arasite Awar d, I was asked to comment on the role of so-called resear c h par asites within the ecosystem of secondary data analysis. 
Drawing on my own experiences, I discuss mechanisms by which r eanal ysis of published datasets can catalyze biological discover- 
ies, pr oduce r esour ces that w ould be impossible to gener ate within a single labor atory, and drive the refinement of computational 
methods. 
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Introduction 

Over the past 2 decades, the maturation of high-throughput tech- 
niques has driven an exponential increase in the depth with which 

biological systems can be measured. Genomic , epigenomic , tran- 
scriptomic , proteomic , metabolomic , and lipidomic assa ys mea- 
sure thousands of molecular phenotypes at once. Because these 
assays generate more measurements that can realistically be in- 
ter pr eted in the context of a single study, and because of expand- 
ing mandates to deposit the datasets produced by these assays 
in public r epositories, ther e ar e mor e opportunities than e v er to 
r eanal yze published datasets and make new disco veries . 

This is the so-called ecosystem of “r esearc h par asitism”—an 

ecosystem in which a (largely computational) community of “re- 
searc h par asites” [ 1 ] le v er a ges datasets made publicl y av ailable 
by other investigators to formulate and test new hypotheses. Be- 
low, I discuss the diverse types of questions that can be addressed 

through secondary data analysis , dra wing on my own experiences 
as a r esearc h par asite. 

Enabling Biological Discovery 

Perhaps the most conventional form of secondary data analysis 
involv es r eanal yzing a single published dataset to address a ques- 
tion that was not considered by the original in vestigators . In the 
fields of mass spectr ometry–based pr oteomics and metabolomics,
whic h hav e been a major focus of my o wn w ork, opportunities of 
this nature are abundant. The complexity of mass spectrometric 
data is such that a substantial proportion of the tandem mass 
spectra collected in proteomic or metabolomic experiments has 
historicall y gone unidentified. Ov er time, ho w e v er, the intr o- 
duction of new computational methods and the accumulation 

of r efer ence spectr a hav e allo w ed increasing numbers of these 
pr e viousl y cryptic signals to be decoded. Armed with this new 

knowledge , in v estigators can r eturn to published datasets to 
identify additional analytes and correlate their abundance with 

phenotypes, such as disease state [ 2 , 3 ]. 
Recei v ed: October 29, 2024. Accepted: November 4, 2024 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
My o wn w ork in the setting of toxicology highlights the value of
eturning to existing datasets long after their original collection—
n this case, to r e v eal pr e viousl y una ppr eciated patterns of illicit
rug use [ 4 ]. In a typical year, dozens of new drugs of abuse will
merge on the illicit mark et. To xicological laboratories are tasked
ith detecting these drugs in clinical and forensic samples to
iagnose intoxications and guide public health responses . T his ,
o w e v er, is a daunting task. Unambiguous drug identification by
ass spectrometry requires synthetic standards for each drug of 

oncern. The sheer number of new drugs that are introduced to
he illicit market each year means that forensic laboratories can-
ot r ealisticall y acquir e standards for e v ery possible drug and
ust instead make difficult decisions about which standards to 

cquire. 
My colleagues and I sho w ed that, b y r eanal yzing arc hiv al mass

pectrometry data from > 12,000 clinical urine samples, we could
ncov er pr e viousl y una ppr eciated patterns of substance use [ 4 ].
e le v er a ged the av ailability of ne w mass spectr al data to iden-

ify a series of drugs that were not being detected by existing
cr eens. In one particularl y striking case, we discov er ed that the
ynthetic opioid fluor ofentan yl had been pr olifer ating within the
ommunity—a finding that was of significant interest to local pub-
ic health officials. A subset of the identifications suggested by this
econdary data analysis were validated experimentally through 

he acquisition of ne w standards, whic h wer e then used to de v elop
ew clinical assa ys . T hese efforts exemplify the potential for sec-
ndary data analysis to enable clinically relevant discoveries and 

uide data-driven decision-making within analytical laboratories.

e v eloping Data Resources 

igh-thr oughput experiments ar e po w erful, but they can also be
xpensive and labor-intensive. As a result, experiments conducted 

ithin individual laboratories typically profile a limited number of 
 eplicates—usuall y no more than a handful per condition. These
xperimental designs are often sufficient to reveal differences 
 Open Access article distributed under the terms of the Cr eati v e Commons 
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ith large biological effect sizes but can produce both false pos-
tives and false negatives when effect sizes are smaller. A second
orm of r esearc h par asitism involv es the meta-anal ysis of man y
mall-scale experiments to r e v eal patterns that are reproducible
cross datasets . For instance , meta-analysis might reveal trends
 epr oducible acr oss differ ent animal models of the same disease
 5 ] or associated with the same physiological process in different
pecies [ 6 ]. 

While meta-analysis can answer questions that are difficult to
ddr ess thr ough anal ysis of individual datasets, it also presents its
wn challenges. Experimental and computational workflows are
 ar el y standardized acr oss labor atories, and this v ariation intr o-
uces not only experimental batch effects—which have received
 great deal of attention—but also computational batch effects
temming from differences in data processing. 

I encounter ed these c hallenges firsthand in carrying out a
eta-anal ysis of co-fr actionation mass spectr ometry (CF-MS)

ata [ 7 ]. CF-MS is a po w erful tec hnique for pr otein–pr otein in-
er action ma pping, but at the time of these studies, the field had
ot conv er ged on best pr actices for the design or anal ysis of CF-
S experiments. I reasoned that such best practices could be

dentified through a comprehensive reanalysis of all published
F-MS datasets. Ho w e v er, the authors of published studies had

ak en di v er gent a ppr oac hes to data pr epr ocessing, including pr o-
ein identification, quantification, quality control, and normaliza-
ion. To overcome the potentially confounding effects of this com-
utational v ariation, I r eanal yzed a total of 12,683 pr oteomic ex-
eriments with a standardized pipeline . T his pipeline allo w ed us
o compar e differ ent a ppr oac hes to pr otein quantification, nor-

alization, and quality control—all of which, we showed, could
arkedly impact the accuracy of downstream analysis. 
Meta-analysis can also produce resources that would be im-

ractical to assemble within a single laboratory. In the same meta-
nalysis of CF-MS data, and a subsequent update that more than
oubled the size of this r esource [ 8 ], integr ation of 166 human CF-
S experiments allo w ed us to produce one of the highest-quality
aps of the human pr otein–pr otein inter action network in exis-

ence. We also inferred protein–protein interaction networks for
ozens of species throughout the tree of life, in many cases for
he first time . T hese inferences were made possible by drawing on
 harmonized dataset that had r equir ed almost 2 years of unin-
errupted instrument time to collect. 

efining Computational Tools 

 third form of r esearc h par asitism le v er a ges published datasets
o benchmark computational methods for the analysis of these
atasets and guide the de v elopment of e v en better methods. My
ork in the setting of single-cell tr anscriptomics, for whic h the
023 Junior P ar asite Aw ar d w as conferr ed, pr ovides an illustr ativ e
xample [ 9 ]. In this work, my colleagues and I sought to com-
are methods for differential expression (DE) analysis of single-
ell transcriptomics data. Although similar comparisons had al-
eady been reported, these efforts had relied primarily on simula-
ions to establish a ground truth. It seemed to us that this ap-
r oac h risked r eca pitulating the assumptions used to gener ate
he simulated data in any resulting comparison of DE methods.

e ther efor e sought an alternativ e a ppr oac h. 
We identified a total of 18 published experiments that col-

ected matching bulk and single-cell RNA sequencing data from
he same populations of cells exposed to the same perturbations.
 hese datasets , we r easoned, pr ovided a form of experimental

ground truth” that would allow for statistical methods for DE
nalysis of single-cell transcriptomics data to be compared on the
asis of their ability to r eca pitulate patterns detected in the bulk
atasets. 

We le v er a ged these datasets to compare 14 of the most widely
sed methods for DE anal ysis. Sur prisingl y, we identified m uc h
or e striking differ ences between statistical methods that had

een a ppar ent in sim ulation studies. It was a ppar ent that all
he top-performing methods shared a common property: namely,
hey a ggr egated the cells fr om eac h biological r eplicate befor e per-
orming statistical comparisons. 

Because pr e vious benc hmarks had not identified these striking
ifferences between methods that aggregated cells from each bi-
logical replicate (“pseudobulk” DE methods) and methods that
id not (“single-cell” DE methods), we a gain le v er a ged published
atasets to elucidate the underlying mechanism. First, we found
hat single-cell DE methods were disproportionately likely to in-
orr ectl y call highl y expr essed genes as differ entiall y expr essed.
econd, we found that r andoml y a ggr egating cells acr oss biolog-

cal samples to form “pseudo-replicates” both abolished the su-
erior performance of the pseudobulk methods and r eintr oduced
 bias to w ar d highl y expr essed genes . T hir d, w e sho w ed that the
ommon features of single-cell DE methods and DE analysis of
pseudo-r eplicates” ar ose fr om the tendency for statistical meth-
ds to misattribute the inherent variability between replicates to
he effect of a biological perturbation. Finally, w e sho w ed that in-
 ppr opriate statistical methods could produce hundreds of false
iscov eries e v en in the absence of an y biological differ ences. 

Since we first reported these findings in 2021, pseudobulk DE
nal ysis has incr easingl y become the norm in the field of single-
ell transcriptomics . T his trend underscores the potential for re-
earc h par asitism to cr eate a “virtuous cycle”: secondary anal ysis
f published datasets can identify optimal computational meth-
ds, and as these methods gain traction, they can in turn refine
he inter pr etation of ne w datasets. 

onclusions 

esearc h par asites hav e mor e opportunities than e v er to adv ance
ur understanding of biological systems through secondary anal-
sis of published datasets. Secondary analyses can test new hy-
otheses, assemble harmonized data resources, and benchmark
omputational methods—and sometimes do all of the above in
he same study. Ho w e v er, the fact that the data to be analyzed
lready exist does not absolve would-be parasites from the re-
ponsibility of thoughtfully negotiating the relationship between
ata and hypothesis [ 10 ]. Instead, parasites stand to benefit from
ultivating their knowledge of the liter atur e to identify published
atasets that could address a particular question, refining their

nitial hypotheses based on their analysis of those datasets, and
erforming further experiments, either on the computing cluster
r in the laboratory, to validate biological inferences and elucidate
nderl ying mec hanisms. 

ote from the Editors 

he Researc h P ar asite Aw ar ds take place at the Pacific Sympo-
ium on Biocomputing each January at the Fairmont Orchid on
he Big Island of Ha waii, USA. T he establishment of the award
as a reaction to an editorial that pr esented ar guments a gainst
ata sharing, including that it promoted a system where “re-
earc h par asites” (those who r euse datasets cr eated by “fr ont-
ine r esearc hers”) would pr olifer ate. As pr omoters of data shar-
ng, GigaScience Press has supported the Junior P ar asite Aw ar d for
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postdoctor al, gr aduate, or under gr aduate tr ainees. Publishing humans. Nature 2024;626:419–26. https:// doi.org/ 10.1038/ s415 
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Commentaries from the winners provides useful lessons for other 
r esearc h par asites. For mor e, see the Researc h P ar asite Aw ar ds 
w ebsite, https://resear chparasite.com/. 
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