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Abstract

High-throughput techniques that measure thousands of analytes at once have become ubiquitous features of biological research. The
increasing expectation that the raw data generated by these techniques be deposited to public repositories creates rich opportunities
for secondary analysis of these datasets. Such opportunities can take multiple forms. As the recipient of the 2023 Junior Research
Parasite Award, I was asked to comment on the role of so-called research parasites within the ecosystem of secondary data analysis.
Drawing on my own experiences, I discuss mechanisms by which reanalysis of published datasets can catalyze biological discover-
ies, produce resources that would be impossible to generate within a single laboratory, and drive the refinement of computational

methods.

Introduction

Over the past 2 decades, the maturation of high-throughput tech-
niques has driven an exponential increase in the depth with which
biological systems can be measured. Genomic, epigenomic, tran-
scriptomic, proteomic, metabolomic, and lipidomic assays mea-
sure thousands of molecular phenotypes at once. Because these
assays generate more measurements that can realistically be in-
terpreted in the context of a single study, and because of expand-
ing mandates to deposit the datasets produced by these assays
in public repositories, there are more opportunities than ever to
reanalyze published datasets and make new discoveries.

This is the so-called ecosystem of “research parasitism”—an
ecosystem in which a (largely computational) community of “re-
search parasites” [1] leverages datasets made publicly available
by other investigators to formulate and test new hypotheses. Be-
low, I discuss the diverse types of questions that can be addressed
through secondary data analysis, drawing on my own experiences
as a research parasite.

Enabling Biological Discovery

Perhaps the most conventional form of secondary data analysis
involves reanalyzing a single published dataset to address a ques-
tion that was not considered by the original investigators. In the
fields of mass spectrometry-based proteomics and metabolomics,
which have been a major focus of my own work, opportunities of
this nature are abundant. The complexity of mass spectrometric
data is such that a substantial proportion of the tandem mass
spectra collected in proteomic or metabolomic experiments has
historically gone unidentified. Over time, however, the intro-
duction of new computational methods and the accumulation
of reference spectra have allowed increasing numbers of these
previously cryptic signals to be decoded. Armed with this new
knowledge, investigators can return to published datasets to
identify additional analytes and correlate their abundance with
phenotypes, such as disease state [2, 3].

My own work in the setting of toxicology highlights the value of
returning to existing datasets long after their original collection—
in this case, to reveal previously unappreciated patterns of illicit
drug use [4]. In a typical year, dozens of new drugs of abuse will
emerge on the illicit market. Toxicological laboratories are tasked
with detecting these drugs in clinical and forensic samples to
diagnose intoxications and guide public health responses. This,
however, is a daunting task. Unambiguous drug identification by
mass spectrometry requires synthetic standards for each drug of
concern. The sheer number of new drugs that are introduced to
the illicit market each year means that forensic laboratories can-
not realistically acquire standards for every possible drug and
must instead make difficult decisions about which standards to
acquire.

My colleagues and I showed that, by reanalyzing archival mass
spectrometry data from >12,000 clinical urine samples, we could
uncover previously unappreciated patterns of substance use [4].
We leveraged the availability of new mass spectral data to iden-
tify a series of drugs that were not being detected by existing
screens. In one particularly striking case, we discovered that the
synthetic opioid fluorofentanyl had been proliferating within the
community—a finding that was of significant interest to local pub-
lic health officials. A subset of the identifications suggested by this
secondary data analysis were validated experimentally through
the acquisition of new standards, which were then used to develop
new clinical assays. These efforts exemplify the potential for sec-
ondary data analysis to enable clinically relevant discoveries and
guide data-driven decision-making within analytical laboratories.

Developing Data Resources

High-throughput experiments are powerful, but they can also be
expensive and labor-intensive. As a result, experiments conducted
within individual laboratories typically profile a limited number of
replicates—usually no more than a handful per condition. These
experimental designs are often sufficient to reveal differences
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with large biological effect sizes but can produce both false pos-
itives and false negatives when effect sizes are smaller. A second
form of research parasitism involves the meta-analysis of many
small-scale experiments to reveal patterns that are reproducible
across datasets. For instance, meta-analysis might reveal trends
reproducible across different animal models of the same disease
[5] or associated with the same physiological process in different
species [6].

While meta-analysis can answer questions that are difficult to
address through analysis of individual datasets, it also presentsits
own challenges. Experimental and computational workflows are
rarely standardized across laboratories, and this variation intro-
duces not only experimental batch effects—which have received
a great deal of attention—but also computational batch effects
stemming from differences in data processing.

I encountered these challenges firsthand in carrying out a
meta-analysis of co-fractionation mass spectrometry (CF-MS)
data [7]. CF-MS is a powerful technique for protein—protein in-
teraction mapping, but at the time of these studies, the field had
not converged on best practices for the design or analysis of CF-
MS experiments. I reasoned that such best practices could be
identified through a comprehensive reanalysis of all published
CF-MS datasets. However, the authors of published studies had
taken divergent approaches to data preprocessing, including pro-
tein identification, quantification, quality control, and normaliza-
tion. To overcome the potentially confounding effects of this com-
putational variation, I reanalyzed a total of 12,683 proteomic ex-
periments with a standardized pipeline. This pipeline allowed us
to compare different approaches to protein quantification, nor-
malization, and quality control—all of which, we showed, could
markedly impact the accuracy of downstream analysis.

Meta-analysis can also produce resources that would be im-
practical to assemble within a single laboratory. In the same meta-
analysis of CF-MS data, and a subsequent update that more than
doubled the size of this resource [8], integration of 166 human CF-
MS experiments allowed us to produce one of the highest-quality
maps of the human protein—protein interaction network in exis-
tence. We also inferred protein-protein interaction networks for
dozens of species throughout the tree of life, in many cases for
the first time. These inferences were made possible by drawing on
a harmonized dataset that had required almost 2 years of unin-
terrupted instrument time to collect.

Refining Computational Tools

A third form of research parasitism leverages published datasets
to benchmark computational methods for the analysis of these
datasets and guide the development of even better methods. My
work in the setting of single-cell transcriptomics, for which the
2023 Junior Parasite Award was conferred, provides an illustrative
example [9]. In this work, my colleagues and I sought to com-
pare methods for differential expression (DE) analysis of single-
cell transcriptomics data. Although similar comparisons had al-
ready been reported, these efforts had relied primarily on simula-
tions to establish a ground truth. It seemed to us that this ap-
proach risked recapitulating the assumptions used to generate
the simulated data in any resulting comparison of DE methods.
We therefore sought an alternative approach.

We identified a total of 18 published experiments that col-
lected matching bulk and single-cell RNA sequencing data from
the same populations of cells exposed to the same perturbations.
These datasets, we reasoned, provided a form of experimental
“ground truth” that would allow for statistical methods for DE

analysis of single-cell transcriptomics data to be compared on the
basis of their ability to recapitulate patterns detected in the bulk
datasets.

We leveraged these datasets to compare 14 of the most widely
used methods for DE analysis. Surprisingly, we identified much
more striking differences between statistical methods that had
been apparent in simulation studies. It was apparent that all
the top-performing methods shared a common property: namely,
they aggregated the cells from each biological replicate before per-
forming statistical comparisons.

Because previous benchmarks had not identified these striking
differences between methods that aggregated cells from each bi-
ological replicate (“pseudobulk” DE methods) and methods that
did not (“single-cell” DE methods), we again leveraged published
datasets to elucidate the underlying mechanism. First, we found
that single-cell DE methods were disproportionately likely to in-
correctly call highly expressed genes as differentially expressed.
Second, we found that randomly aggregating cells across biolog-
ical samples to form “pseudo-replicates” both abolished the su-
perior performance of the pseudobulk methods and reintroduced
a bias toward highly expressed genes. Third, we showed that the
common features of single-cell DE methods and DE analysis of
“pseudo-replicates” arose from the tendency for statistical meth-
ods to misattribute the inherent variability between replicates to
the effect of a biological perturbation. Finally, we showed that in-
appropriate statistical methods could produce hundreds of false
discoveries even in the absence of any biological differences.

Since we first reported these findings in 2021, pseudobulk DE
analysis has increasingly become the norm in the field of single-
cell transcriptomics. This trend underscores the potential for re-
search parasitism to create a “virtuous cycle”: secondary analysis
of published datasets can identify optimal computational meth-
ods, and as these methods gain traction, they can in turn refine
the interpretation of new datasets.

Conclusions

Research parasites have more opportunities than ever to advance
our understanding of biological systems through secondary anal-
ysis of published datasets. Secondary analyses can test new hy-
potheses, assemble harmonized data resources, and benchmark
computational methods—and sometimes do all of the above in
the same study. However, the fact that the data to be analyzed
already exist does not absolve would-be parasites from the re-
sponsibility of thoughtfully negotiating the relationship between
data and hypothesis [10]. Instead, parasites stand to benefit from
cultivating their knowledge of the literature to identify published
datasets that could address a particular question, refining their
initial hypotheses based on their analysis of those datasets, and
performing further experiments, either on the computing cluster
or in the laboratory, to validate biological inferences and elucidate
underlying mechanisms.

Note from the Editors

The Research Parasite Awards take place at the Pacific Sympo-
sium on Biocomputing each January at the Fairmont Orchid on
the Big Island of Hawaii, USA. The establishment of the award
was a reaction to an editorial that presented arguments against
data sharing, including that it promoted a system where ‘re-
search parasites” (those who reuse datasets created by “front-
line researchers”) would proliferate. As promoters of data shar-
ing, GigaScience Press has supported the Junior Parasite Award for
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postdoctoral, graduate, or undergraduate trainees. Publishing
Commentaries from the winners provides useful lessons for other
research parasites. For more, see the Research Parasite Awards
website, https://researchparasite.com/.
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